Building Information Systems

VIDEO CASES
Video Case 1: BPM: Business Process Management in a SaaS Environment
Video Case 2: IBM Helps the City of Madrid With Real-Time BPM Software
Instructional Video 2: Workflow Management:核准

Learning Objectives
1. How does building new systems produce organizational change?
2. What are the core activities in the systems development process?
3. What are the principal methodologies for modeling and designing systems?
4. What are alternative methods for building information systems?
5. What are new approaches for system building in the digital firm era?
• **Problem:** Inefficient manual processes for capital expense reports (CER)
• **Solutions:** Winshuttle workflow software for automating business form development and integrating with existing SharePoint and SAP systems
• Demonstrates the use of information systems to streamline and redesign business processes
• Illustrates ability of information systems to automat process, radically reduce costs and time

1. Systems as Planned Organizational Change

Structural organizational changes enabled by IT

1. **Automation**
 - Increases efficiency
 - Replaces manual tasks

2. **Rationalization of procedures**
 - Streamlines standard operating procedures
 - Often found in programs for making continuous quality improvements
 - Total quality management (TQM)
 - Six sigma

3. **Business process redesign**
 - Analyze, simplify, and redesign business processes
 - Reorganize workflow, combine steps, eliminate repetition

4. **Paradigm shifts**
 - Rethink nature of business
 - Define new business model
 - Change nature of organization
The most common forms of organizational change are automation and rationalization. These relatively slow-moving and slow-changing strategies present modest returns but little risk. Faster and more comprehensive change—such as redesign and paradigm shifts—carries high rewards but offers substantial chances of failure.

FIGURE 13-1 ORGANIZATIONAL CHANGE CARRIES RISKS AND REWARDS

Business process management (BPM)
- Variety of tools, methodologies to analyze, design, optimize processes
- Used by firms to manage business process redesign

Steps in BPM
1. Identify processes for change.
2. Analyze existing processes.
3. Design the new process.
4. Implement the new process.
5. Continuous measurement.

Purchasing a book from a physical bookstore requires many steps to be performed by both the seller and the customer.

FIGURE 13-2 AS-IS BUSINESS PROCESS FOR PURCHASING A BOOK FROM A PHYSICAL BOOKSTORE
Using Internet technology makes it possible to redesign the process for purchasing a book so that it requires fewer steps and consumes fewer resources.

FIGURE 13-3

REDESIGNED PROCESS FOR PURCHASING A BOOK ONLINE

- Various BPM tools used to:
 - Identify and document existing processes.
 - Identify inefficiencies.
 - Create models of improved processes.
 - Capture and enforce business rules for performing, automating processes.
 - Integrate existing systems to support process improvements.
 - Verify that new processes have improved.
 - Measure impact of process changes on key business performance indicators.

Interactive Session: Organizations

Burton Snowboards Speeds Ahead With Nimble Business Processes p542

1. Analyze Burton using the value chain and competitive forces models.
2. Why are the business processes described in this case such an important source of competitive advantage for Burton?
3. Explain exactly how these process improvements enhance Burton’s operational performance and decision making.
2. Learning Objectives

1. How does building new systems produce organizational change?
2. What are the core activities in the systems development process?
3. What are the principal methodologies for modeling and designing systems?
4. What are alternative methods for building information systems?
5. What are new approaches for system building in the digital firm era?

2. The Systems Development Process

- Systems development:
 - Activities that go into producing an information system solution to an organizational problem or opportunity
 1. Systems analysis
 2. Systems design
 3. Programming
 4. Testing
 5. Conversion
 6. Production and maintenance

Building a system can be broken down into six core activities.
1. Systems analysis
 – Analysis of problem to be solved by new system
 • Defining the problem and identifying causes
 • Specifying solutions
 – Systems proposal report identifies and examines alternative solutions
 • Identifying information requirements
 – Includes feasibility study
 • Is solution feasible and good investment?
 • Is required technology, skill available?

2. System analysis (cont.)
 – Establishing information requirements
 • Who needs what information, where, when, and how
 • Define objectives of new/modified system
 • Detail the functions new system must perform
 – Faulty requirements analysis is leading cause of systems failure and high systems development cost

2. Systems design
 – Describes system specifications that will deliver functions identified during systems analysis
 – Should address all managerial, organizational, and technological components of system solution
 – Role of end users
 • User information requirements drive system building
 • Users must have sufficient control over design process to ensure system reflects their business priorities and information needs
 • Insufficient user involvement in design effort is major cause of system failure
Table 13.1 Design Specifications

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>IMPLEMENTATION</th>
<th>DOCUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Medium</td>
<td>Output Specifications</td>
<td>Operations documentation</td>
</tr>
<tr>
<td>Content</td>
<td>Program Evaluation</td>
<td>Systems documents</td>
</tr>
<tr>
<td>Timing of Outputs</td>
<td>Software Evaluation</td>
<td>Conversion documentation</td>
</tr>
<tr>
<td>INPUT</td>
<td>PERSONNEL</td>
<td>CONSIDERATIONS</td>
</tr>
<tr>
<td>Origins</td>
<td>Personnel Skills</td>
<td>Training</td>
</tr>
<tr>
<td>Flow</td>
<td>Job Functions</td>
<td>Change-over to new system</td>
</tr>
<tr>
<td>Data Entry</td>
<td>Personnel Qualifications</td>
<td>Cutover planning</td>
</tr>
<tr>
<td>USER INTERFACE</td>
<td>Equipment and operating procedures</td>
<td>SIMULATION</td>
</tr>
<tr>
<td>Simplicity</td>
<td>User Interface Design</td>
<td>Simulation planning</td>
</tr>
<tr>
<td>Efficiency</td>
<td>User Interface Design</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>Logic</td>
<td>User Interface Design</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>Feedback</td>
<td>User Interface Design</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>SECURITY</td>
<td>User Interface Design</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>Process controls</td>
<td>User Interface Design</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>System controls</td>
<td>User Interface Design</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>DATABASE DESIGN</td>
<td>Technical Specifications</td>
<td>USER INTERFACE</td>
</tr>
<tr>
<td>Logical data model</td>
<td>Technical Specifications</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>Volume and speed requirements</td>
<td>Technical Specifications</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>File organization and design</td>
<td>Technical Specifications</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>Record specifications</td>
<td>Technical Specifications</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>PROCESSING</td>
<td>TECHNICAL</td>
<td>SECURITY</td>
</tr>
<tr>
<td>Computations</td>
<td>Technical Specifications</td>
<td>Access controls</td>
</tr>
<tr>
<td>Program modules</td>
<td>Technical Specifications</td>
<td>Catastrophe plans</td>
</tr>
<tr>
<td>Required reports</td>
<td>Technical Specifications</td>
<td>Audit trails</td>
</tr>
<tr>
<td>Timing of outputs</td>
<td>Technical Specifications</td>
<td>CONTROLS</td>
</tr>
<tr>
<td>MANUAL PROCEDURES</td>
<td>TECHNICAL</td>
<td>CONVERSION</td>
</tr>
<tr>
<td>What activities</td>
<td>Technical Specifications</td>
<td>Transfer files</td>
</tr>
<tr>
<td>Who performs work</td>
<td>Technical Specifications</td>
<td>Initiate new procedures</td>
</tr>
<tr>
<td>When</td>
<td>Technical Specifications</td>
<td>Select testing method</td>
</tr>
<tr>
<td>Where</td>
<td>Technical Specifications</td>
<td>Cut over to new system</td>
</tr>
<tr>
<td>HOW</td>
<td>TECHNICAL</td>
<td>TRAINING</td>
</tr>
<tr>
<td>How tasks are performed</td>
<td>Technical Specifications</td>
<td>Select training techniques</td>
</tr>
<tr>
<td>Who performs the job</td>
<td>Technical Specifications</td>
<td>Develop training modules</td>
</tr>
<tr>
<td>When and where</td>
<td>Technical Specifications</td>
<td>Identify training facilities</td>
</tr>
<tr>
<td>DOCUMENTATION</td>
<td>TECHNICAL</td>
<td>ORGANIZATIONAL CHANGES</td>
</tr>
<tr>
<td>Operations documentation</td>
<td>Technical Specifications</td>
<td>Task redesign</td>
</tr>
<tr>
<td>Systems documents</td>
<td>Technical Specifications</td>
<td>Job redesign</td>
</tr>
<tr>
<td>User documentation</td>
<td>Technical Specifications</td>
<td>Process design</td>
</tr>
</tbody>
</table>

3. Programming:
- System specifications from design stage are translated into software program code

4. Testing:
- Ensures system produces right results
- Unit testing: Tests each program in system separately
- System testing: Test functioning of system as a whole
- Acceptance testing: Makes sure system is ready to be used in production setting
- Test plan: All preparations for series of tests

A SAMPLE TEST PLAN TO TEST A RECORD CHANGE

<table>
<thead>
<tr>
<th>Problem</th>
<th>Expected Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Change records</td>
<td>Not allowed</td>
</tr>
<tr>
<td>2.1</td>
<td>Change existing record Key field</td>
<td>Allowed</td>
</tr>
<tr>
<td>2.2</td>
<td>Change non-existing record</td>
<td>Error message</td>
</tr>
<tr>
<td>2.3</td>
<td>Change deleted record</td>
<td>Data entry error</td>
</tr>
<tr>
<td>2.4</td>
<td>More records</td>
<td>Error message</td>
</tr>
<tr>
<td>2.5</td>
<td>Insert record</td>
<td>Error message</td>
</tr>
<tr>
<td>2.6</td>
<td>About deleting change</td>
<td>Error message</td>
</tr>
</tbody>
</table>

When developing a test plan, it is important to include the various conditions to be tested. The requirements for each condition must be identified, and the expected results. Test plan begins against both end users and information systems boundary.
5. Conversion
- Process of changing from old system to new system
- Four main strategies
 1. Parallel strategy
 2. Direct cutover
 3. Pilot study
 4. Phased approach
- Requires end-user training
- Finalization of detailed documentation showing how system works from technical and end-user standpoint

6. Production and maintenance
- System reviewed to determine if revisions needed
- May include post-implementation audit document
- Maintenance
 - Changes in hardware, software, documentation, or procedures to a production system to correct errors, meet new requirements, or improve processing efficiency
 - 20 percent debugging, emergency work
 - 20 percent changes to hardware, software, data, reporting
 - 60 percent of work: user enhancements, improving documentation, recoding for greater processing efficiency

Table 13.2 Systems Development

<table>
<thead>
<tr>
<th>CORE ACTIVITY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems analysis</td>
<td>Identify problem(s)</td>
</tr>
<tr>
<td>Systems design</td>
<td>Create design specifications</td>
</tr>
<tr>
<td>Programming</td>
<td>Translate design specifications into code</td>
</tr>
<tr>
<td>Testing</td>
<td>Unit test</td>
</tr>
<tr>
<td>Conversion</td>
<td>Plan conversion</td>
</tr>
<tr>
<td>Production and Maintenance</td>
<td>Upgrade the system</td>
</tr>
</tbody>
</table>

Copyright © 2016 Pearson Education, Inc.
3. Learning Objectives

1. How does building new systems produce organizational change?
2. What are the core activities in the systems development process?
3. What are the principal methodologies for modeling and designing systems?
4. What are alternative methods for building information systems?
5. What are new approaches for system building in the digital firm era?

3. Methodologies for Modeling and Designing Systems

- Most prominent methodologies for modeling and designing systems:
 1. Structured methodologies
 2. Object-oriented development

- Structured methodologies
 - Structured: Techniques are step-by-step, progressive
 - Process-oriented: Focusing on modeling processes or actions that manipulate data
 - Separate data from processes

- Data flow diagram (DFD):
 - Primary tool for representing system’s component processes and flow of data between them
 - Offers logical graphic model of information flow
 - High-level and lower-level diagrams can be used to break processes down into successive layers of detail

- Data dictionary: Defines contents of data flows and data stores

- Process specifications: Describe transformation occurring within lowest level of data flow diagrams

- Structure chart: Top-down chart, showing each level of design, relationship to other levels, and place in overall design structure
The system has three processes: Verify availability (1.0), Enroll student (2.0), and Confirm registration (3.0). The arrows are labeled with the data flows that occur between processes. There is one input entity to this system: the student. There are two data stores: the student master file and the course file.

Object-oriented development

- **Object** is the basic unit of systems analysis and design
 - **Object**: combines data and the processes that operate on that data
 - Data encapsulated in object can be accessed and modified only by operations, or methods, associated with that object

- **Object-oriented modeling based on concepts of class and inheritance**
 - Objects belong to a certain class and have features of that class
 - May inherit structures and behaviors of a more general, ancestor class
This figure illustrates how classes inherit the common features of their superclass.

FIGURE 13-8

Object-oriented development
- More iterative and incremental than traditional structured development
 - **Systems analysis**: Interactions between system and users analyzed to identify objects
 - **Design phase**: Describes how objects will behave and interact; grouped into classes, subclasses, and hierarchies
 - **Implementation**: Some classes may be reused from existing library of classes, others created or inherited
- Because objects reusable, object-oriented development can potentially reduce time and cost of development.

Computer-aided software engineering (CASE)
- Software tools to automate development and reduce repetitive work, including
 - Graphics facilities for producing charts and diagrams
 - Screen and report generators, reporting facilities
 - Analysis and checking tools
 - Data dictionaries
 - Code and documentation generators
- Support iterative design by automating revisions and changes and providing prototyping facilities
- Require organizational discipline to be used effectively
1. How does building new systems produce organizational change?
2. What are the core activities in the systems development process?
3. What are the principal methodologies for modeling and designing systems?
4. What are alternative methods for building information systems?
5. What are new approaches for system building in the digital firm era?

4. Alternative Systems Building Methods

- **Alternative systems building methods**
 - Traditional systems life cycle
 - Prototyping
 - End-user development
 - Application software packages
 - Outsourcing

- **Traditional systems life cycle:**
 - Oldest method for building information systems
 - Phased approach:
 - Development divided into formal stages
 - "Waterfall" approach: One stage finishes before next stage begins
 - Formal division of labor between end users and information systems specialists
 - Emphasizes formal specifications and paperwork
 - Still used for building large complex systems
 - Can be costly, time-consuming, and inflexible
• Prototyping
 – Building experimental system rapidly and inexpensively for end users to evaluate
 – Prototype: Working but preliminary version of information system
 • Steps in prototyping
 1. Identify user requirements.
 2. Develop initial prototype.
 3. Use prototype.
 4. Revise and enhance prototype.

• Advantages of prototyping
 – Useful if some uncertainty in requirements or design solutions
 – Often used for end-user interface design
 – More likely to fulfill end-user requirements

• Disadvantages
 – May gloss over essential steps
 – May not accommodate large quantities of data or large number of users
 • May not undergo full testing or documentation
4. Alternative Systems Building Methods

• End-user development:
 – Allows end users to develop simple information systems with little or no help from technical specialists
 – Reduces time and steps required to produce finished application
 – Tools include
 – User friendly query languages and reporting
 – PC software tools

• End-user development (cont.):
 – Advantages:
 • More rapid completion of projects
 • High level of user involvement and satisfaction
 – Disadvantages:
 • Not designed for processing-intensive applications
 • Inadequate management and control, testing, documentation
 • Loss of control over data
 – Managing end-user development
 • Require cost-justification of end-user system projects
 • Establish hardware, software, and quality standards

• Application software packages
 – Save time and money
 – Many offer customization features:
 • Software can be modified to meet unique requirements without destroying integrity of package software
 – Evaluation criteria for systems analysis include:
 • Functions provided by the package, flexibility, user friendliness, hardware and software resources, database requirements, installation and maintenance efforts, documentation, vendor quality, and cost
 – Request for Proposal (RFP)
 • Detailed list of questions submitted to packaged-software vendors
 • Used to evaluate alternative software packages
4. Alternative Systems Building Methods

• Outsourcing
 – Several types
 • Cloud and SaaS providers
 – Subscribing companies use software and computer hardware provided by vendors
 • External vendors
 – Hired to design, create software
 – Domestic outsourcing
 – Driven by firms need for additional skills, resources, assets
 – Offshore outsourcing
 – Driven by cost-savings

4. Alternative Systems Building Methods (cont.)

• Outsourcing (cont.)
 – Advantages
 • Allows organization flexibility in IT needs
 – Disadvantages
 • Hidden costs, for example:
 – Identifying and selecting vendor
 – Transitioning to vendor
 • Opening up proprietary business processes to third party

4. Alternative Systems Building Methods

If a firm spends $10 million on offshore outsourcing contracts, that company will actually spend 15.2 percent in extra costs even under the best-case scenario. In the worst-case scenario, where there is a dramatic drop in productivity along with exceptionally high transition and layoff costs, a firm can expect to pay up to 57 percent in extra costs on top of the $10 million outlay for an offshore contract.
1. How does building new systems produce organizational change?
2. What are the core activities in the systems development process?
3. What are the principal methodologies for modeling and designing systems?
4. What are alternative methods for building information systems?
5. What are new approaches for system building in the digital firm era?

Rapid application development (RAD)
- Process of creating workable systems in a very short period of time
- Utilizes techniques such as:
 - Visual programming and other tools for building graphical user interfaces
 - Iterative prototyping of key system elements
 - Automation of program code generation
 - Close teamwork among end users and information systems specialists

Joint application design (JAD)
- Used to accelerate generation of information requirements and to develop initial systems design
- Brings end users and information systems specialists together in interactive session to discuss system’s design
- Can significantly speed up design phase and involve users at intense level
5a. New Approaches for System Building

- **Agile development**
 - Focuses on rapid delivery of working software by breaking large project into several small subprojects
 - Subprojects
 - Treated as separate, complete projects
 - Completed in short periods of time using iteration and continuous feedback
 - Emphasizes face-to-face communication over written documents, allowing collaboration and faster decision making

5a. New Approaches for System Building

- **Component-based development**
 - Groups of objects that provide software for common functions (e.g., online ordering) and can be combined to create large-scale business applications
 - Web services
 - Reusable software components that use XML and open Internet standards (platform independent)
 - Enable applications to communicate with no custom programming required to share data and services
 - Can engage other Web services for more complex transactions
 - Using platform and device-independent standards can result in significant cost-savings and opportunities for collaboration with other companies

5b. Application Development for the Digital Firm

- **Mobile application development**
 - Mobile Web sites
 - Mobile Web apps
 - Native apps
 - Special requirements for mobile platform
 - Smaller screens, keyboards
 - Multitouch gestures
 - Saving resources (memory, processing)
 - Responsive Web design
 - Web sites programmed so that layouts change automatically according to user’s computing device
Interactive Session: Technology
What Does It Take To Go Mobile? p562

1. What management, organization, and technology issues need to be addressed when building mobile applications?
2. How does user requirement definition for mobile applications differ from that in traditional systems analysis?
3. Describe the business processes changed by USAA’s mobile applications before and after the applications were deployed.